Coastal Flooding Increases Traffic Delays and Accidents

Disruptions from sea level rise and coastal flooding events have significant indirect impacts on urban traffic networks and road safety.

Background

Almost half of the world’s population currently lives in cities and that number is projected to rise significantly in the near future. This rapid urbanization is contributing to increased flood risk due to the growing concentration of people and resources in cities and the clustering of cities along coastlines. These urban shifts also result in more complex and interconnected systems on which people depend, such as transportation networks. Disruptions to urban traffic networks from flooding or other natural disasters can have serious socioeconomic consequences. In fact, what are defined as indirect impacts from these types of events, such as commute-related employee absences, travel time delays and increase in vehicular accident rates, could ultimately outweigh the more direct physical damage to roads and infrastructure caused by severe flooding.

Stanford researchers examined traffic networks in the San Francisco Bay Area (SF Bay Area) as a case study to quantify the indirect impacts of sea level rise and intensifying coastal flood events on urban systems. Specifically, the researchers sought to identify the effects flooding would have on traffic delays and safety, particularly as road closures rerouted vehicles into adjacent streets and residential neighborhoods not designed to handle heavy vehicle flows.
Similar to many other regions across the country, the SF Bay Area has dense urban development concentrated along its coastline and heavily congested traffic grids. Currently, even relatively minor instances of coastal flooding have the potential to inundate major traffic corridors and increase already lengthy commute times and traffic accidents. For coastal flooding events, three types of flood impacts were identified: impassable commutes where the origin, destination or critical road connections are flooded and impede driving; travel time delays caused by commuters rerouting to avoid flooded roadways; and increases in car and pedestrian accident rates in communities that experience high inflows of traffic as commuters reroute onto local roads.

The study highlights the challenges of preparing the traffic network in the Bay Area for climate change. Increasing coastal flooding could lead to significant travel time delays across the entire Bay Area, including communities that do not encounter any flooding themselves. However, focusing exclusively on reducing travel time delays may be problematic as some communities will be impacted by coastal flooding primarily through an increase in accident rates.

This brief is based on the papers “When Floods Hit the Road: Resilience to Flood-related Traffic Disruption in the San Francisco Bay Area and Beyond,” published in Science Advances and “Traffic accidents and delays present contrasting pictures of traffic resilience to coastal flooding in the San Francisco Bay Area, USA,” published in Urban Climate.